

Concurrency & Networking
5/5’ 16

Asynchronous Tasks

Asynchronous Tasks

• In iOS and OS X, each process has a main thread which is used for
responding UI events.

• The main thread is used to manipulate UI elements and is also the
only thread which you can do so.

• Heavy tasks like performing disk I/O and fetching data from the
network should be moved to background threads.

Asynchronous Tasks

• The pthread, thread model of Unix systems, is the fundamental of
OS X and iOS’s concurrency APIs. 
The Foundation provides NSThread as a wrapper of low-level pthread APIs.

• The NSLocking protocol declares the elementary methods adopted
by classes that define lock objects. 
By using a lock object, an application can protect critical sections of code from
being executed simultaneously by separate threads.

Grand Central Dispatch

• The libdispatch, GCD, is Apple’s technology to provide support
of concurrency tasks and multi-processor programming. 
The fundamental idea is to move the management of the thread pool out of the
hands of the developer, and closer to the operating system.

• The implementation of GCD is based on thread pool pattern. Tasks
are defined by closures/blocks and put into queues for execution
scheduling. 
Grand Central Dispatch still uses threads at the low level but abstracts them
away from the programmer.

Asynchronous Tasks > libdispatch

Dispatch Queues

• Dispatch queues are an easy way to perform tasks asynchronously
and concurrently in your application. Each queues has its own
priority when competing with other queues.

• Queues are very similar to threads, but they are different at all.  
i.e. dispatching tasks to queues is not equal to spawning threads for tasks. The
GCD manages threads for you and only creates threads when necessary.

• You should treat dispatch queues like a series of task schedulers
with different priorities.

Asynchronous Tasks > libdispatch > Dispatch Queues

Dispatch Queues Types

Asynchronous Tasks > libdispatch > Dispatch Queues

Serial
Queue

It executes one task at a time in the order in which they are added to
the queue. Serial queues are often used to synchronize access to a
specific resource.

Main
Queue

A globally available serial queue that executes tasks on the
application’s main thread. You should manipulate UI events and
elements in this queue.

Concurrent
Queue

It executes multiple tasks concurrently. The exact number of tasks
executing at any given time is variable and depends on system
conditions.

Dispatch Queues Priorities

Asynchronous Tasks > libdispatch > Dispatch Queues

QOS Level Queue Priority Description

User-interactive (Higher than High) Work that is interacting with the user.

User-initiated High Work that the user has initiated and requires
immediate results.

Default Default This level falls between user-initiated and utility,
and is not intended to be used by developers.

Dispatch Queues Priorities

Asynchronous Tasks > libdispatch > Dispatch Queues

QOS Level Queue Priority Description

Utility Low
Work that may take some time to complete and
doesn’t require an immediate result. Utility tasks
typically have a progress bar that is visible to the
user.

Background Background
Work that operates in the background and isn’t
visible to the user, such as indexing,
synchronizing, and backups.

Demo: Using libdispatch

NSOperation

• It’s a high-level wrapper of libdispatch API.

• The NSOperation class is an abstract class you use to encapsulate
the code and data associated with a single task.  
An operation object is a single-shot object—that is, it executes its task once
and cannot be used to execute it again. You typically execute operations by
adding them to an NSOperationQueue.

• Operations could have priorities and dependencies between each
other.

Asynchronous Tasks > NSOperation

Networking

NSURL
• An NSURL object represents a URL that can potentially contain the

location of a resource on a remote server, the path of a local file on
disk, or even an arbitrary piece of encoded data.

• Data types have methods to fetch resources pointed by urls.  
Like NSString(contentsOfURL:)

• NSURLRequest and NSURLSession are the fundamental elements
of networking in Foundation framework.

• Use Alamofire, a third-party open-source package for networking.
Networking

JSON

Networking > JSON

{
 "firstName": "John",
 "lastName": "Doe",
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021"
 },
 "phoneNumber": [
 "212 555-1234",
 "646 555-4567"
]
}

{} is object/map.

[] is list.
Key: Value pairs

RESTful API

• URI is based on resources.

• Using HTTP method to operate resources - CRUD.  
GET, POST, PUT, DELETE, HEAD, OPTIONS

Networking > RESTful API

https://api.example.com/posts/

https://api.example.com/post/12/

HTTP Request

Networking > HTTP Request

CLIENT SERVER
request

response

GET /index.html HTTP/1.1 
Host: www.example.com

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/2.2.15 (Unix) (Red-Hat/Linux)
...

http://www.example.com

HTTP Messages

• A message is composed by headers and body. They are separated
by an empty new line.

Networking > HTTP Request

HTTP/1.1 200 OK
Date: Thr, 5 May 2016 14:31:06 GMT
Server: nginx/1.9.5
Last-Modified: Wed, 4 May 2016 08:32:59 GMT
Content-Length: 51
Connection: close
Content-Type: text/html

<!html><html><body><h1>It Works!</h1></body></html>

HTTP QueryString

• The query string is the part after question mark, “?”, in the URL.

• The representation form is called url-encoded.

Networking > HTTP Request

http://api.example.com/posts/?author=rolling&series=harry%20potter

HTTP Request Methods
• HEAD 

Retrieve meta-information written in
response headers only.

• OPTIONS 
Return available HTTP methods of
specific URL/Resources.

• GET 
Request a representation of the
specified resource. Default method of
HTTP Request.

• POST 
Submit data to be processed to the
identified resource.

• PUT 
Uploads a new representation of the
specified resource.

• DELETE 
Deletes the specified resource

Networking > HTTP Request

HTTP Response Statuses
• 100+ Informational 

Request received, continuing
process.

• 200+ Success  
The action requested by the client
was received, understood, accepted
and processed successfully.

• 300+ Redirection 
The client must take additional action
to complete the request.

• 400+ Client Error 
Client seems to have erred. These are
typically the most common error
codes for users.

• 500+ Server Error 
The server failed to fulfill an apparently
valid request.

Networking > HTTP Request

• Thread Programming Guide 
https://developer.apple.com/library/
ios/documentation/Cocoa/
Conceptual/Multithreading/
Introduction/Introduction.html#//
apple_ref/doc/uid/10000057i-CH1-
SW1

• Concurrency Programming Guide 
https://developer.apple.com/library/
ios/documentation/General/
Conceptual/
ConcurrencyProgrammingGuide/
Introduction/Introduction.html

• Concurrent Programming: APIs
and Challenges 
https://www.objc.io/issues/2-
concurrency/concurrency-apis-and-
pitfalls/

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/Introduction/Introduction.html#//apple_ref/doc/uid/10000057i-CH1-SW1
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
https://www.objc.io/issues/2-concurrency/concurrency-apis-and-pitfalls/

