

Communication Patterns

4/28" 16

Communication Patterns

e Every apps consists of multiple modules (objects) that need to
communicate with each other to get the job done.

- Notifications

- Callback blocks/closures
- Key-Value Observation KVO
- Delegation

- Jarget-Action

Communication Patterns - |

larget-Action

target
—

message passing

UlEvent UIResponder

Communication Patterns > Target-Action

Responder Chain

Application Application
e B
4 N\ - a4 ™\
_ view .
view controller view
L J
0SS f) OS X
) 4 N\ 4 N\
view view view
controller
< J
[initial view } [initial view }
(& J | J
. J (. J
. J . J

Communication Patterns > Target-Action

Delegation

strong ref.
—_—)

—
weak ref.

UIViewController UIWebView
<UIWebViewDelegate>

Communication Patterns > Delegation

Notification Pattern

Notification Pattern

\, J

Posts

Notification Center

Broadcast Broadcast

observerl observer?2 observer3

Communication Patterns > Notifications

Notification Pattern

e A notification encapsulates information about an event, including
event name, sender, and a dict containing information of the event.

e Objects that need to know about an event register with the
notification center that it wants to be notified when that event emits.

e \When the event does happen, a notification Is posted to the
notification center, which broadcasts It to all registered objects.

e Also called “Publish-Subscribe” pattern in other languages.

Communication Patterns > Notifications

class MyClass: NSObject {

override init() {
super.init()
NSNotificationCenter.defaultCenter().addObserver(self,
selector: #selector(MyClass.appDidBecomeActive(_:)),
name: UIApplicationDidBecomeActiveNotification,
object: nil)

I3
deinit {
NSNotificationCenter.defaultCenter().removeObserver(self,
name: UIApplicationDidFinishLaunchingNotification,
object: nil)
I3

func appDidBecomeActive(notification: NSNotification) A
print(notification.name, notification.object, notification.userInfo)

}

Communication Patterns > Notifications

Register to Notification Center

NSNotificationCenter.defaultCenter().addObserver(self,
selector: #selector(MyClass.appDidBecomeActive(:)),
name: UIApplicationDidBecomeActiveNotification,

object: nil)

e Set the notification name and sender object you are interested in.

events and WNoever seno

Soth name and opbject can e nil, wir

st (.e., al

ICh means you

events rrom a

don't care what kind of
| senders)

e Use observer and selector to specify the receiving method.
The observer should be instances of classes, and the #selector syntax
represents a method of a class.

Communication Patterns > Notifications

Deregister from Notification Center

NSNotificationCenter.defaultCenter().removeObserver(self,
name: UIApplicationDidFinishLaunchingNotification,
object: nil)

e Deregister from notification center when you are no longer interested

N an event, or when you are no longer able to receive messages.
Usually put this code in deinit method of a class.

Communication Patterns > Notifications

Post Notifications

let SomeDataUpdatedNotification = "SomeDataUpdatedNotification"
func updateSomeData() A{
let n = NSNotification(name: SomeDataUpdatedNotification,
object: dataSource,

userInfo: ["success": truel)
NSNotificationCenter.defaultCenter().postNotification(n)

o Notification names are usually constant global variable.
Jsing let to declare it at the global scope.

Communication Patterns > Notifications

NSNotificationQueue

e Notification center posts notifications synchronously.
SO the sender would be blocked by recelvers.

e Use notification queue to post notifications asynchronously.
VWith NSPostingStyle to specity the time to post notifications.

e Use coalescing options to ignore queued duplicated notifications.

Communication Patterns > Notifications

Callback Closures/Blocks Pattern

Callback Closures/Blocks Pattern

typealias DataFetchHandler = (data: String?, error: Error?) —> Void
func fetchRemoteData(completion handler: DataFetchHandler) A

handler(data: "data string", error: nil)

e NOde.|s uses this pattern very much.

e pe careful about the object reference cycle when using this pattern.

Communication Patterns > Callbacks

e Easy to setup

Target-Action | |
e But compiler cannot validate

Delegation the setup for you.

Callback blocks/closures e Cannot carry extra information
to the receiver and get return

Notifications value from receivers.

Key—Va\ue Observation, KVO e |Jsed by the OS to dispa’[ch

user interaction events.

Communication Patterns - Target Action

e \ery strict syntax, and compiler

Target-Action
would check the contormation.

Delegation But also hard to setup
Callback blocks/closures e Easy to debug and trace.
Notifications e Easy to pass information as

arguments and get return value
Key-Value Observation, KVO from the receiver

Communication Patterns - Delegation

Tlarget-Action

Delegation e Easy to setup

Callback blocks/closures e Suited for one-off event/

Notifications response callback

Key-Value Observation, KVO

Communication Patterns - Callbacks

e Fach message can has

Target-Action Mmultiple receivers

e Cannot get return value.

The sender doesn’'t know the
existence of receivers,

Delegation

Callback blocks/closures

e [he sender takes the initiative
to send messages.

Notifications

Key-Value Observation, KVO
e Hard to debug and trace

Sut easy to setup and use

Communication Patterns - Notification

Target-Action

Delegation

Callback blocks/closures
Notifications

Key-Value Observation, KVO

Communication Patterns - KVO

Focuses on value changes

Cannot get return value from

the recelver.

1he sender goesn’'t know the
existence of receivers,

The recelver takes the Initiative
to observe value changes.

Old-school and bad design API

objc.lo - Communication Patterns
Nttps://www.objc.10/issues/ 7 -foundation/communication-patterns/

IOS Developer Library - Notification Programming Topics
Nttps://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Notifications/
ntroduction/introNotifications.htmi#//apple_ret/doc/uid/10000043-SW-

NSHipster - NSNotification & NSNotificationCenter
Nttp://nshipster.com/nsnaotification-and-nsnotificationcenter/

objc.io - Key Value Coding and Observing
Nttps://www.objc.l0/issues/ 7 -foundation/key-value-coding-and-observing/

NSHipster - Key-Value Observing
Nttp://nshipster.com/key-value-observing/

https://www.objc.io/issues/7-foundation/communication-patterns/
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Notifications/Introduction/introNotifications.html#//apple_ref/doc/uid/10000043-SW1
http://nshipster.com/nsnotification-and-nsnotificationcenter/
https://www.objc.io/issues/7-foundation/key-value-coding-and-observing/
http://nshipster.com/key-value-observing/

