

Communication Patterns
4/28’ 16

Communication Patterns

• Every apps consists of multiple modules (objects) that need to
communicate with each other to get the job done.
- Notifications
- Callback blocks/closures
- Key-Value Observation KVO
- Delegation
- Target-Action

Communication Patterns - I

Target-Action

Communication Patterns > Target-Action

UIResponderUIEvent

target

message passing

Responder Chain

Communication Patterns > Target-Action

iOS OS X

Delegation

Communication Patterns > Delegation

UIWebViewUIViewController 
<UIWebViewDelegate>

strong ref.

weak ref.

Notification Pattern

Notification Pattern

Communication Patterns > Notifications

Notification Pattern

• A notification encapsulates information about an event, including
event name, sender, and a dict containing information of the event.

• Objects that need to know about an event register with the
notification center that it wants to be notified when that event emits.

• When the event does happen, a notification is posted to the
notification center, which broadcasts it to all registered objects.

• Also called “Publish-Subscribe” pattern in other languages.

Communication Patterns > Notifications

class MyClass: NSObject {

 override init() {
 super.init()
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: #selector(MyClass.appDidBecomeActive(_:)),
 name: UIApplicationDidBecomeActiveNotification,
 object: nil)
 }

 deinit {
 NSNotificationCenter.defaultCenter().removeObserver(self,
 name: UIApplicationDidFinishLaunchingNotification,
 object: nil)
 }

 func appDidBecomeActive(notification: NSNotification) {
 print(notification.name, notification.object, notification.userInfo)
 }

}

Communication Patterns > Notifications

Register to Notification Center

• Set the notification name and sender object you are interested in.  
Both name and object can be nil, which means you don’t care what kind of
events and whoever sends it. (i.e., all events from all senders)

• Use observer and selector to specify the receiving method. 
The observer should be instances of classes, and the #selector syntax
represents a method of a class.

Communication Patterns > Notifications

NSNotificationCenter.defaultCenter().addObserver(self,
 selector: #selector(MyClass.appDidBecomeActive(_:)),
 name: UIApplicationDidBecomeActiveNotification,
 object: nil)

Deregister from Notification Center

• Deregister from notification center when you are no longer interested
in an event, or when you are no longer able to receive messages.  
Usually put this code in deinit method of a class.

Communication Patterns > Notifications

NSNotificationCenter.defaultCenter().removeObserver(self,
 name: UIApplicationDidFinishLaunchingNotification,
 object: nil)

Post Notifications

• Notification names are usually constant global variable.  
Using let to declare it at the global scope.

Communication Patterns > Notifications

let SomeDataUpdatedNotification = "SomeDataUpdatedNotification"

func updateSomeData() {
 // ... Data update logic here
 let n = NSNotification(name: SomeDataUpdatedNotification,
 object: dataSource,
 userInfo: ["success": true])
 NSNotificationCenter.defaultCenter().postNotification(n)
}

NSNotificationQueue

• Notification center posts notifications synchronously. 
So the sender would be blocked by receivers.

• Use notification queue to post notifications asynchronously.  
With NSPostingStyle to specify the time to post notifications.

• Use coalescing options to ignore queued duplicated notifications.

Communication Patterns > Notifications

Callback Closures/Blocks Pattern

Callback Closures/Blocks Pattern

• node.js uses this pattern very much.

• be careful about the object reference cycle when using this pattern.

Communication Patterns > Callbacks

typealias DataFetchHandler = (data: String?, error: Error?) -> Void
func fetchRemoteData(completion handler: DataFetchHandler) {
 // ... data logic goes here
 handler(data: "data string", error: nil)
}

Target-Action

Delegation

Callback blocks/closures

Notifications

Key-Value Observation, KVO

Communication Patterns - Target Action

• Easy to setup

• But compiler cannot validate
the setup for you.

• Cannot carry extra information
to the receiver and get return
value from receivers.

• Used by the OS to dispatch
user interaction events.

Target-Action

Delegation

Callback blocks/closures

Notifications

Key-Value Observation, KVO

Communication Patterns - Delegation

• Very strict syntax, and compiler
would check the conformation. 
But also hard to setup

• Easy to debug and trace.

• Easy to pass information as
arguments and get return value
from the receiver.

Target-Action

Delegation

Callback blocks/closures

Notifications

Key-Value Observation, KVO

Communication Patterns - Callbacks

• Easy to setup

• Suited for one-off event/
response callback

Target-Action

Delegation

Callback blocks/closures

Notifications

Key-Value Observation, KVO

Communication Patterns - Notification

• Each message can has
multiple receivers

• Cannot get return value. 
The sender doesn’t know the
existence of receivers.

• The sender takes the initiative
to send messages.

• Hard to debug and trace 
But easy to setup and use

Target-Action

Delegation

Callback blocks/closures

Notifications

Key-Value Observation, KVO

Communication Patterns - KVO

• Focuses on value changes

• Cannot get return value from
the receiver.  
The sender doesn’t know the
existence of receivers.

• The receiver takes the initiative
to observe value changes.

• Old-school and bad design API

• objc.io - Communication Patterns  
https://www.objc.io/issues/7-foundation/communication-patterns/

• iOS Developer Library - Notification Programming Topics 
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Notifications/
Introduction/introNotifications.html#//apple_ref/doc/uid/10000043-SW1

• NSHipster - NSNotification & NSNotificationCenter 
http://nshipster.com/nsnotification-and-nsnotificationcenter/

• objc.io - Key Value Coding and Observing 
https://www.objc.io/issues/7-foundation/key-value-coding-and-observing/

• NSHipster - Key-Value Observing  
http://nshipster.com/key-value-observing/

https://www.objc.io/issues/7-foundation/communication-patterns/
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Notifications/Introduction/introNotifications.html#//apple_ref/doc/uid/10000043-SW1
http://nshipster.com/nsnotification-and-nsnotificationcenter/
https://www.objc.io/issues/7-foundation/key-value-coding-and-observing/
http://nshipster.com/key-value-observing/

