

Auto Layout & Adaptivity
4/21’ 16

View Geometry

Coordinates System of Views

• Points are used when programming with
user coordinate space. 
UIKit and CoreGraphics objects use “points”.

• Pixels are used when working with device
coordinate space. 
Like image drawing and OpenGL ES.

• Points to pixels are not always 1:1. 
For iPhone 5s, 1 point equals to 2 pixels.

http://www.paintcodeapp.com/news/ultimate-guide-to-iphone-resolutions

origin

x+

y+

320 points 
375 points (6, 6s) 
414 points (6+, 6s+)

480 points 
568 points (5, 5s)
667 points (6, 6s)
736 points (6+, 6s+)

http://www.paintcodeapp.com/news/ultimate-guide-to-iphone-resolutions

Coordinates System of Views

• In UIKit, the origin is at the top-left corner of
the view. x+ is from left to right and y+ is
from top to bottom. 
In AppKit and CoreGraphics, the origin is at
“bottom-left” and “y+” is from bottom to top.

• For iPad, the width is 768 points and the
height is 1,024 points. 
For iPad Pro, it’s 1,024 points × 1,366 points.

origin

x+

y+

320 points 
375 points (6, 6s) 
414 points (6+, 6s+)

480 points 
568 points (5, 5s)
667 points (6, 6s)
736 points (6+, 6s+)

Geometry of Views
• a CGRect is a rectangle with origin and size. 

a CGPoint represents points and a CGSize is an area.

• CoreGraphics is a C Library.  
Hence its APIs are function based.

• A view has a frame and a bounds, both are CGRect.  
“Frame” is in terms of the superview. “Bounds” is in terms of
the view (local). So the “origin” in bounds is (0,0). When
“using” a view, use “frame”. When “implementing” (drawing) a
view, use “bounds”.

x, y

width

height

CGRect

UIView Animation

• “frame”, “bounds”, “center”, “transform”, “alpha”, and
“backgroundColor” are animatable properties.

• Use CGAffineTransform to translate views. 
It represents affine transformation matrices in linear algebra.

UIView.animateWithDuration(1.0) {
 view.frame.origin.x += 50.0
 view.transform = CGAffineTransformMakeRotation(CGFloat(M_PI)/4)
}

Auto Layout

Auto Layout

• Auto Layout dynamically calculates the size and position of all the
views in your view hierarchy, based on constraints placed on those
views.

• Auto Layout defines your user interface using a series of constraints.
Constraints typically represent a relationship between two views.
Auto Layout then calculates the size and location of each view based on these
constraints. This produces layouts that dynamically respond to both internal and
external changes.

Auto Layout

Auto Layout

Auto Layout

Frame Based Constraint Based

UIStackView

• A stack view defines a row or column of user interface elements.  
It provides an easy way to leverage the power of Auto Layout without
introducing the complexity of constraints.

• Stack views arrange its elements based on its properties.
- axis: defines orientation, either vertical or horizontal.
- distribution: defines the layout of the views along the axis.
- alignment: defines the layout of the views perpendicular to its axis.
- spacing: defines the space between adjacent views.

Auto Layout > UIStackView

UIStackView

Auto Layout > UIStackView

Constraints

• The layout of your view hierarchy is defined as a series of linear
equations. Each constraint represents a single equation.  
Your goal is to declare a series of equations that has one and only one possible
layout result.

Auto Layout > Constraints

Constraints

• Check NSLayoutAttribute enum
for complete list.

• The direction of Leading/Trailing
would be flipped when using RTL
language.

• “Baseline” comes from glyph
metrics.

Auto Layout > Constraints > Attributes

Constraints - Examples
// Setting Setting the minimum width with a constant
View.height >= 0.0 * NotAnAttribute + 40.0

// Setting a fixed distance between two buttons
Button_2.leading = 1.0 * Button_1.trailing + 8.0

// Aligning the leading edge of two buttons
Button_1.leading = 1.0 * Button_2.leading + 0.0

// Give two buttons the same width
Button_1.width = 1.0 * Button_2.width + 0.0

// Center a view in its superview
View.centerX = 1.0 * Superview.centerX + 0.0
View.centerY = 1.0 * Superview.centerY + 0.0

// Give a view a constant aspect ratio
View.height = 2.0 * View.width + 0.0

Auto Layout > Constraints > Examples

Constraint Priorities

• By default, all constraints are required. Auto Layout must calculate a
solution that satisfies all the constraints.  
If it cannot, there is an error. Auto Layout prints information about the
unsatisfiable constraints to the console, and chooses one of them to break.

• You can also create optional constraints. All constraints have a
priority between 1 and 1000. Constraints with a priority of 1000 are
required. All other constraints are optional.

Auto Layout > Constraints > Priorities

Intrinsic Content Sizes

• Some views have a natural size given their current content. This is
referred to as their intrinsic content size. 
For example, a button’s intrinsic content size is the size of its title and margin.

• A label or button’s intrinsic content size is based on the amount of text
shown and the font used. For other views, the intrinsic content size is
even more complex. For example, an empty image view does not
have an intrinsic content size. As soon as you add an image, though,
its intrinsic content size is set to the image’s size.

Auto Layout > Constraints > Intrinsic Content Size

Content Hugging & Compression

• Auto Layout represents a view’s intrinsic content size using a pair of
constraints for each dimension.  
The content hugging pulls the view inward to fits the content. The
compression resistance pushes the view outward so that it does not clip the
content.

Auto Layout > Constraints > Intrinsic Content Size

Content Hugging & Compression

// Compression Resistance (default priority is 750)
View.height >= 0.0 * NotAnAttribute + IntrinsicHeight
View.width >= 0.0 * NotAnAttribute + IntrinsicHeight

// Content Hugging (default priority is 250)
View.height <= 0.0 * NotAnAttribute + IntrinsicHeight
View.width <= 0.0 * NotAnAttribute + IntrinsicHeight
Auto Layout > Constraints > Intrinsic Content Size

Adaptivity

Adaptivity

• An adaptive interface is one
that makes the best use of
the available space. 
It’s similar to the responsive web
design concept.

• Being adaptive means being
able to adjust your content
so that it fits well on any iOS
device.

Adaptivity

Adaptivity
• Traits describe the environment in which your view controllers and

views must operate. Traits help you make high-level decisions about
your interface.
- horizontalSizeClass: conveys the general width of your interface.
- verticalSizeClass: conveys the general height of your interface.
- displayScale: conveys whether the content is displayed on a Retina

display or a standard-resolution display.
- userInterfaceIdiom: provided for backward compatibility and

conveys the type of device on which your app is running.
Adaptivity

Adaptivity

• A trait collection describes the iOS interface environment for your
app, including traits such as horizontal and vertical size class,
display scale, and user interface idiom.

Adaptivity

// Get current trait collection
public var traitCollection: UITraitCollection { get }

// Handle trait collection and size changes
public func willTransitionToTraitCollection(newCollection: UITraitCollection,
 withTransitionCoordinator coordinator: UIViewControllerTransitionCoordinator)
public func viewWillTransitionToSize(size: CGSize,
 withTransitionCoordinator coordinator: UIViewControllerTransitionCoordinator)
public func traitCollectionDidChange(previousTraitCollection: UITraitCollection?)

Adaptivity

Adaptivity

Regular Width Compact Width

Regular Height All iPads in both
directions.

All iPhones in portrait
direction.

Compact Height
iPhone 6 Plus and iPhone

6s Plus in horizontal
direction.

Other iPhones in
horizontal direction.

Adaptivity

• You could set different Auto Layout constraints and some View
properties for each size classes combination.

• A constraint or a View is installed when it’s available in current size
classes combination.

Adaptivity

Adaptivity

• Size classes of a view controller may be overridden by its parent
view controller. 
Don’t reference the screen size directly. You should check the size classes to
layout your views for different display size.

• Some View Controllers have different behaviors when the size
classes is changed.  
Like UISplitViewController and UIModalPresentationPopover.

Adaptivity

Demo - Auto Layout & Adaptivity

