

ARC &  
Using Open Source Packages
4/14’ 16

Memory Management in Swift

Memory Management in Swift

• We usually use “Reference counting” and a reference graph to
manage dynamically allocated objects in memory usage.

• The Swift language uses ARC, Automatic Reference Counting, for
memory management.  
This is “Reference Counting”. So it’s only related to “class” types.

• Most modern languages use GC, Garbage Collection, which
requires a background process and slows down apps.

Memory Management

Memory Management in Swift

• Before ARC (iOS 5),
Apple’s platforms use
MRC, Manual Reference
Counting.

Memory Management

Memory management code

Memory management code

Memory management code

Memory management code

App Code

App Code

Memory management code

App Code

App Code

App Code

App Code

App Code

App Code

Without ARC Using ARC

C
o

d
e

W
ri

ti
n

g
T

im
e

Memory Management in Swift

• ARC lifts the work of tracking the reference graph of all objects from
the programmers to the compiler. 
The whole memory management thing gets fully processed during compile
time. The performance of runtime is not affected.

• Objects are freed by ARC as soon as when they’re not pointed by
any references.

• But you have to tell ARC some information of your object graph
when necessary.

Memory Management

Memory Management in Swift

• “References to objects” as “Ownership of objects”

• 3 primary reference types: Strong, Weak, and Unowned

• Strong reference keep object alive in memory.  
Objects would be destroyed when there’s no strong refs pointing to them.

• Weak and Unowned references just point to the object but not keep
objects alive. 
When the object is deallocated, weak references will point to “nil” instead.

Memory Management

The Strong Reference

• A strong reference keeps object alive in memory. 
An object would be destroyed when there’s no any strong references pointing to it.

Memory Management > Strong References of ARC

Strong

someObj1

SomeObject

Strong

someObj2

The Strong Reference

• A strong reference keeps object alive in memory. 
An object would be destroyed when there’s no any strong references pointing to it.

Memory Management > Strong References of ARC

SomeObject

Strong Reference Cycle

• A strong reference cycle keeps all related
objects living in the memory even when no
references are pointing to those objects.

• Memory resources of mobile devices are
limited. Having lots of un-recycled
resources would make your app crashing.

Memory Management > Strong Reference Cycle

strongstrong

Strong Reference Cycle

• Weak and unowned references are
designed to solve the strong reference
cycle issue.

Memory Management > Strong Reference Cycle

strongweak

The Weak Reference

• Weak reference just points to the object. It doesn’t keep object alive. 
When the object is deallocated, the reference will point to “nil” instead.

Memory Management > Weak and Unowned References of ARC

Strong

someObj1

SomeObject

Weak

someObj2

The Weak Reference

• Weak reference just points to the object. It doesn’t keep object alive. 
When the object is deallocated, the reference will point to “nil” instead.

Memory Management > Memory Management > Weak and Unowned References of ARC

SomeObject

nil

Weak

someObj2

Weak and Unowned References

• Weak references would point to “nil” after its target object is freed.
And hence weak references must be Optionals.

• Conversely, use an unowned reference when you know that the
reference will never be nil once it has been set during initialization.

Memory Management > Weak References of ARC

Strong Reference Cycle

• Closures hold used variables via strong references by default. It’s
your responsibility to deal with the reference cycle issue.

Memory Management > Strong Reference Cycle

let object1 = SomeObject() // Assume SomeObject is a class
let object2 = AnotherObject() // Assume AnotherObject is a class

object1.anotherStrongRefObject = object2

object2.strongRefClosure = {
 // Closures would have refs to objects they used.
 print(object1)
}

object2

object1

closure

Strong Reference Cycle

• Use a “Capture List” to define how closures capture values.  
[ref-type1 var1, ref-type2 expr2, ref-type3 var3]

Memory Management > Strong Reference Cycle

let object1 = SomeObject() // Assume SomeObject is a class
let object2 = AnotherObject() // Assume AnotherObject is a class

object1.anotherStrongRefObject = object2

object2.strongRefClosure = { [unowned object1] in
 // Closures would have refs to objects they used.
 print(object1)
}

object2

object1

closure

Use case of Weak References

Memory Management > Use case of Weak

Use case of Weak References

Memory Management > Use case of Weak

Use case of Weak References

Memory Management > Use case of Weak

Use case of Unowned References

Memory Management > Use case of Unowned

gitignore

• A file specifies intentionally untracked files that Git should ignore. 
https://git-scm.com/docs/gitignore

• github.com/github/gitignore

• Files of your IDE preferences, temporarily files, built products and
secure credentials.  
It may also contains shared content from CocoaPods and Carthage.

gitignore

gitignore

OS X development environment

OS X development environment

• In Linux, we have yum and apt-get to install and manage
applications, components, and development libraries.

• In OS X, we have homebrew to for development libraries. 
Applications and components are provided from Apple.

• Homebrew installs packages in user domain (/usr/local), and hence
you don’t need root privilege when using those packages.  
For example, you can install a local copy of Python instead of systems. Also
you can install a MySQL db and remove it without leaving trashes on your Mac.

OS X development environment

OS X development environment

• Visit http://brew.sh to install and use homebrew.

• We call packages in brew as “formula”.

• brew install …

• brew update && brew upgrade

OS X development environment

http://brew.sh

• python

• python3

• ruby

• node

• golang

• vim

• bash

• git

• xctool

• swiftlint

• carthage

• youtube-dl

How do Xcode build your apps?

Scheme
Targets

• A target specifies a product to build and contains the rules for
building the product from a set of files in a project or workspace.
Projects can contain one or more targets, each of which produces
one product.

• A scheme defines a collection of targets to build, a configuration to
use when building, and a collection of tests to execute. You can
many schemes, but only one can be active at a time.

Schemes and Targets

Xcode Build Process > Schemes and Targets

Build Settings (Compile/Linker flags)

Build Phases (Dependencies, Files, and Libraries)

Adding 3rd-party libraries

• Some libraries requires special compiler and linker settings.

• Some libraries depend on another 3rd-party libraries.

• Tracking versions of 3rd-party libraries is not easy.

• Use package managers to solve these problems.

Package Managers

Package Managers

• CocoaPods 
Popular and oldest package manager. Easy to learn and use but the whole
manager is very heavy.

• Carthage 
Simple and decentralized dependency manager, but requires more
sophisticated experience of using Xcode.

• Swift Package Manager 
Official supported by the Swift language, but still in development. (3.0)

Open Source Packages
• Choose packages which is still active, has more “stars”, well tested,

and have fully (highly) documented.

• Not all open-source packages are “free” to use. 
You have to follow the policy and guidelines about using it.

• http://www.openfoundry.org/tw/comparison-of-licenses

• Fire an Issue or submit a Pull Request (PR) to contribute to the open
source community when you find problems or have a better idea.  
You could also find the solution of your problem by reading old issue posts.

http://www.openfoundry.org/tw/comparison-of-licenses

Semantic Versioning (Semver)

• Versioning “x.y.z” as “MAJOR.MINOR.PATCH”

• MAJOR version changes when the package makes incompatible
and breaking API changes

• MINOR version is changed when the package adds functionality in
a backwards-compatible manner

• PATCH version means the package makes backwards-compatible
bug fixes.

Version Operators (CocoaPods)

• > 0.7 - Any version higher than 0.7

• >= 1.0 - Version 1.0 and any higher version

• < 3.0 - Any version lower than 3.0

• <= 2.2 - Version 2.2 and any lower version

• ~> 1.1.2 - Version 1.1.2 and up to 1.2, not including 1.2

• ~> 3.2 - Version 3.2 and the up to 4.0, not including 4.0

• CocoaControl

• Twitter & RSS feeds

• Developer blogs and communities  
objc.io/issues & nshipster.com & github.com/kilimchoi/engineering-blogs

• Github Trends, Awesome lists, and stars of others 
github.com/trending/swift & github.com/trending/objective-c  
github.com/sindresorhus/awesome & github.com/vsouza/awesome-ios

• StackOverflow

https://www.objc.io/issues/
http://nshipster.com
https://github.com/kilimchoi/engineering-blogs
https://github.com/trending/swift
https://github.com/trending/objective-c
https://github.com/sindresorhus/awesome
https://github.com/vsouza/awesome-ios

Demo: Use CocoaPods & ObjectMapper

JSON

• JSON (JavaScript Object Notation) is a lightweight data-interchange
format. It is easy for humans to read and write. It is easy for
machines to parse and generate.

• Basic elements are “strings”, “numbers”, “booleans”, and “null”.  
Like "string", 42, true, false, and null.

• Collection JSON elements are “dictionaries” and “arrays”.  
Like {"key": "value"} and ["element", 42]

