

ARC &
Using Open Source Packages

4/14° 16

Memory Management in Swift

Memory Management in Swift

e \We usually use "Reference counting” and a reference graph to
manage dynamically allocated objects In memory usage.

e The Swift language uses ARC, Automatic Reference Counting, for

mMmemory management.
This is “Reference Counting”. So it's only related to “class” types.

e Most modern languages use GC, Garbage Collection, which
requires a background process and slows down apps.

Memory Management

Memory Management in Swift

Without ARC Using ARC

Memory management code

App Code

Memory management code

o Before ARC (iOS 5),
Apple’s platforms use

MRC, Manual Reference
Counting.

App Code

Memory management code

App Code
Memory management code

App Code

Code Writing Time

Memory management code

Memory Management

Memory Management in Swift

o ARC lifts the work of tracking the reference graph of all objects from

the programmers to the compiller.

The whole memory management thing gets fully processed during compile
time. The performance of runtime Is not affected.

e Objects are freed by ARC as soon as when they’re not pointed by
any references.

e But you have to tell ARC some information of your object graph
when necessary.

Memory Management

Memory Management in Swift

e “References to objects” as “Ownership of objects”

e 3 primary reference types: Strong, Weak, and Unowned

o Strong reference keep object alive in memory.
Objects would be destroyed when there's no strong refs pointing to them.

e \Weak and Unowned references just point to the object but not keep

objects alive.
VWhen the object Is deallocated, weak reterences will point to "nil” instead.

Memory Management

The Strong Reference

someObjl

someObj2

SomeQObject

e A strong reference keeps object alive In memaory.
An object would be destroyed when there’s no any strong references pointing to it.

Memory Management > Strong References of ARC

The Strong Reference

J

SomeQObject

e A strong reference keeps object alive In memaory.
An object would be destroyed when there’s no any strong references pointing to it.

Memory Management > Strong References of ARC

Strong Reference Cycle

e A strong reference cycle keeps all related
objects living in the memory even when no
references are pointing to those objects.

Siigelgle Sqigelgle

~

/
\

e Memory resources of mobile devices are
imited. Having lots of un-recycled
resources would make your app crashing.

Memory Management > Strong Reference Cycle

Strong Reference Cycle

" \

weak Siigelgle

1
|
|
) |
) |
))
\
.
A 3

e \Weak and unowned references are
designed to solve the strong reference
cycle issue.

Memory Management > Strong Reference Cycle

The Weak Reference

someObjl

4%0“9

'-
'-
-

someObj2

SomeQObject

e \Weak reference |ust points to the object. It doesn’t keep object alive.
When the object is deallocated, the reference will point to "nil” instead.

Memory Management > Weak and Unowned References of ARC

The Weak Reterence
all
<

" Weak \I

someObjZ
SomeQObject

e Weak reference |just points to the object. It doesn't keep object alive.
When the object is deallocated, the reference will point to "nil” instead.

Memory Management > Memory Management > Weak and Unowned References of ARC

Weak and Unowned References

e \Weak references would point to “nil” after its target object Is freed.
And hence weak references must be Optionals.

e Conversely, use an unowned reference when you know that the
reterence will never be nil once it has been set during initialization.

Memory Management > Weak References of ARC

Strong Reference Cycle object

let objectl
let object?

objectl.anotherStrongRefObject = object?

l

SomeObject() // Assume SomeObject 1s a class
AnotherObject() // Assume AnotherObject is a class ////// ‘\\\

object2.strongRefClosure = {

// Closures would have refs to objects they used.
print(objectl)
} _/ closure
object?2

e Closures hold used variables via strong references by default. It's
your responsipbllity to deal with the reference cycle issue.

Memory Management > Strong Reference Cycle

Strong Reference Cycle

objectt

let objectl

SomeObject() // Assume SomeObject 1s a class v
let object? ‘

AnotherObject() // Assume AnotherObject 1s a class

objectl.anotherStrongRefObject = object?

objectl.strongRefClosure = { [unowned objectl] 1in
// Closures would have refs to objects they used.
print(objectl)

_/ closure

object?2

e Use a “Capture List” to define how closures capture values.
[ref-typel varl, ref-type2 expr2, ref-type3 var3]

Memory Management > Strong Reference Cycle

Use case of Weak References

[var john } { var unit4A J

<Person instance>

<Apartment instance>

name: "John Appleseed” unit: "4A"

apartment: nil tenant: nil

Memory Management > Use case of Weak

Use case of Weak References

{ var john J { var unit4A }

name: "John Appleseed" unit: "4A"

apartment: <Apartment instance> tenant: <Person instance>

Memory Management > Use case of Weak

Use case of Weak References

{ var john J { var unit4A J

name: "John Appleseed" unit: "4A"

apartment: <Apartment instance> l tenant: <Person instance>

weak

Memory Management > Use case of Weak

Use case of Unowned References

[var john J

name: "John Appleseed" number: 1234 5678 9012 3456

card: <CreditCard instance> | customer: <Customer instance>

unowned

Memory Management > Use case of Unowned

gitignore

gitignore

e A file specifies intentionally untracked files that Git should ignore.
Nttps://git-scm.com/docs/gitignore

e github.com/github/gitignore

e Hiles of your IDE preferences, temporarily files, built products and

secure credentials.
t may also contains shared content from CocoaPods and Carthage.

gitignore

OS X development environment

OS X development environment

e [n Linux, we have yum and apt-get to install and manage
applications, components, and development libraries.

e [N OS X, we have homebrew to for development libraries.
Applications and components are provided from Apple.

e Homebrew installs packages in user domain (/usr/local), and hence

you don’t need root privilege when using those packages.
—or example, you can install a local copy of Python instead of systems. AlsSo
you can install a MySQL db and remove it without leaving trashes on your Mac.

OS X development environment

OS X development environment

o Visit http://brew.sh to install and use homebrew.

e \We call packages in brew as “formula”.

« brew 1nstall ..

 brew update && brew upgrade

OS X development environment

http://brew.sh

o)Viglelp
oython3
rupy
node
golang

Vim

pbash

git
XCtOOl
swiftlint
carthage

youtube-dl

How do Xcode build your apps?

Targets

>
O =22 QN = B |[BR|L) IssiieBox

JA IssueBox - iOS) |.@# iPhone 6s Plus IssueBox | Build IssueBox - i0S: Succeeded | 4/5/16 at 11:52 PM

.| IssueBox M D
v IssueBox iOS
PROJECT

s AppDelegate.swift ? Basic Levels + Q-

i IssueBox

General Capabilities Resource Tags Info Build Settings Build Phases

Main.storyboard ?
| Assets.xcassets ? TARGETS V¥ Architectures
LaunchScr...toryboard ? Setting JA IssueBox 10S
Info.plist ? =4 IssueBoxCore iOS Additional SDKs
v IssueBoxCore " IssueBoxCoreTests iOS Architectures Standard architectures (armv7, armr
Info.plist Base SDK Latest iOS (i0S 9.3) ¢
module.modulemap V¥ Build Active Architecture Only <Multiple values> {
3 Users.swift A Debug Yes &
v IssueBoxCoreTests Release No <
3 |ssueBoxC...Tests.swift ? Supported Platforms 05 ¢
— , Valid Architectures arm64 armv/ armv/s
v Frameworks
v Carthage ¥ Assets
Setting JA IssueBox 10S

v i0S
R = Asset Pack Manifest URL Prefix

Schemes and Targets

o A target specifies a product to bulld and contains the rules for
building the product from a set of files Iin a project or workspace.
Projects can contain one or more targets, each of which produces

one product.

e A scheme defines a collection of targets to build, a configuration to
use when building, and a collection of tests to execute. You can

many schemes, but only one can be active at a time.

Xcode Build Process > Schemes and Targets

Nift ?
d 2
S ?
yboard ?
map

S

sts.swift ?
ramework

Build Settings (compile/Linker flags)

]

PROJECT

7—\
= IssueBox

TARGETS

e

b=+ IssueBoxCore iOS

"]IssueBoxCoreTests iOS

General Capabilities

ovels

Resource Tags

Vv Architectures

7=z IssueBox iOS Setting

Additional SDKs

Architectures

Base SDK

V¥ Build Active Architecture Only

Debug
Release

Supported Platforms

Valid Architectures

V Assets
Setting
Asset Pack Manifest URL Prefix
Embed Asset Packs In Product Bundle
Enable On Demand Resources

On Demand Resources Initial Install Tags
On Demand Resources Prefetch Order

V Build Locations

Setting

Info

Build Settings

Q~

JA IssueBox i0S

Standard architectures (armv7, arm64) - $(ARCHS_STANDARD) £
Latest iOS (iI0S 9.3) £

<Multiple values> {
Yes {
No {
i0S ¢
arm64 armv7/ armv7/s

JA IssueBox 10S

No C

Yes {

JA IssueBox i0S

Build Phases

Build Rules

Identity and Type

Name Issue

Location Rela

Issuel
Full Path /User

Issuel

Issuel
Project Document
Project Format Xcoc

Organization Issue

Class Prefix

Text Settings
Indent Using Spac

Widths
T

2 Wr

Source Control

Repository sourc
Type Git
Current Branch maste

Version --

Status Modif

Bulld Phases (Dependencies, Files, and Libraries)

nift

yboard

map

S

ts.swift

ramework

> = ge | <) IssueBox

El General Capabilities Resource Tags Info

PROJECT 4
= ISsueBox

TARGETS V¥V Target Dependencies (1 item)
A IssueBox i0OS i3 IssueBoxCore iOS (IssueBox)
E IssueBoxCore i0OS
[]1ssueBoxCoreTests iOS

+

Vv Compile Sources (1 item)

Name

3 AppDelegate.swift ...in IssueBoxiOS

|

¥V Link Binary With Libraries (2 items)
Name

& ObjectMapper.framework

R

Build Rules

™ Filter

Build Settings Build Phases

Compiler Flags

o o~
oladlusS

Required

Identity and Type

Name Issue

Location Rela

Issue]
Full Path [User

Issuel

Issuel
Project Document
Project Format Xcoc

Organization Issue

Class Prefix

Text Settings
Indent Using Spac

Widths
|

2 Wr

Source Control

Repository sourc
Type Git
Current Branch maste

Adding 3rd-party libraries

e Some libraries requires special compiler and linker settings.
e SOome libraries depend on another 3rd-party libraries.
e [racking versions of 3rd-party libraries is not easy.

e Use package managers to solve these problems.

Package Managers

Package Managers

e CocoalPods
“opular and oldest package manager. Easy to learn and use but the whole
manager Is very heavy.

o Carthage
SImple and decentralized dependency manager, but requires more
sophisticated experience of using Xcode.

o Swift Package Manager
Official supported by the Swift language, but still in development. (3.0)

Open Source Packages

o Choose packages which is still active, has more “stars”, well tested,
and have fully (highly) documented.

e Not all open-source packages are “free” to use.
You have to follow the policy and guidelines about using .

e http:.//www.openfoundry.org/tw/comparison-of-licenses

e Fire an Issue or submit a Pull Request (PR) to contribute to the open

source community when you find problems or have a better idea.
You could also find the solution of your problem by reading old issue posts.

http://www.openfoundry.org/tw/comparison-of-licenses

Semantic Versioning (Semver)

e Versioning “x.y.z" as “MAJOR.MINOR.PATCH?”

e MAJOR version changes when the package makes incompatible
and breaking APl changes

e MINOR version is changed when the package adds functionality in
a backwards-compatible manner

e PATCH version means the package makes backwards-compatible
bug fixes.

Version Operators (CocoaPods)

e > (.7 - Any version higher than 0.7

e >= 1.0 - Version 1.0 and any higher version

e < 3.0 - Any version lower than 3.0

o <= 2.7 -\ersion 2.2 and any lower version

e ~>1.1.2-Version 1.1.2 and up to 1.2, not including 1.2

e ~> 3.2 - Version 3.2 and the up to 4.0, not including 4.0

CocoaControl
Twitter & RSS feeds

Developer blogs and communities
objc.io/issues & nshipster.com & github.com/kilimchol/engineering-plogs

Github Trends, Awesome lists, and stars of others

github.com/trending/swift & github.com/trending/objective-c
github.com/sindresorhus/awesome & github.com/vsouza/awesome-ios

StackOverflow

https://www.objc.io/issues/
http://nshipster.com
https://github.com/kilimchoi/engineering-blogs
https://github.com/trending/swift
https://github.com/trending/objective-c
https://github.com/sindresorhus/awesome
https://github.com/vsouza/awesome-ios

Demo: Use CocoaPods & ObjectMapper

JSON

e JSON (JavaScript Object Notation) is a lightweight data-interchange
format. It iIs easy for humans to read and write. It Is easy for
machines to parse and generate.

)) 1

e Basic elements are “strings”, “numlbers”, “booleans”, and “null”.
Like "string", 42, true, false, and null.

e Collection JSON elements are “dictionaries” and “arrays’.
Like {"key": "value"} and ["element", 42]

