


App Structure and UIKit
March 17, ‘16



Working with iOS SDK

• Most iOS SDK are still written in Objective-C and C.  
Also for SDKs of OS X, tvOS and watchOS. 

• Both Swift and Objective-C are able to work with iOS SDK. 
This relationship is like the one between JavaScript and jQuery or the one 
between Python and Django. 

• Objective-C classes are bridged as Swift classes. And C structs are 
bridged as Swift structs. 
Most types in iOS SDK are actually classes. @objc may be used necessary.

Working with iOS SDK



Working with iOS SDK

• Types conforming to a Swift protocol must implement all methods 
declared in the protocol. (Like Java’s Interface) 

• Objective-C protocols include optional methods, which are not 
required to be implemented by conforming types.

Working with iOS SDK - Objective-C Protocols

@objc protocol SomeProtocol: NSObjectProtocol { 
    func someRequired() 
    optional func someOptional() 
}



Working with iOS SDK

• Numbers (Integers, Floats, and Boolean), String, Array, Set, and Dictionary 
are bridged between 2 languages. 
As NSNumber, NSString, NSArray, NSSet, and NSDictionary. 

• Objective-C doesn’t use namespace. Instead, it uses prefixes before 
class names. 
“NS” means for the “NeXTSTEP” where the OS X is derived from. “UI” means 
UIKit (the iOS SDK). 

• Check ObjC-Bridge.playground in the Swift-Introduction git repo.

Working with iOS SDK





Launch iOS app



Launch iOS app

• The runtime would find the class which annotated with the 
@UIApplicationMain attribute. This class would be the main entry 
point of your app. 
It’s usually annotated on AppDelegate class in AppDelegate.swift 

• The annotated class must implement UIApplicationDelegate 
protocol. And it usually inherits from UIResponder class.  
UIApplicationDelegate handles events related to app’s lifecycle. UIResponder 
responds to global events of the app.

Launch iOS app



App Lifecycle

• Implement methods of 
UIApplicationDelegate to 
handle app lifecycle events. 

• Observe NSNotification 
emitted by UIApplication to 
handle app lifecycle events. 
Notification pattern would be 
mentioned in future classes.

Launch iOS app > App Lifecycle



App Lifecycle - Event Handling

• Implementing method in UIApplicationDelegate is like a ground 
control center of your app elements, which is suited for app-level 
resources. 
But not all resources and elements in your app are accessible by the app 
delegate.  

• Observing NSNotification emitted by UIApplication is 
distributed in each elements and better for local resources.

Launch iOS app > App Lifecycle



App Lifecycle

• We usually prepare app level 
resources in “finish 
initialization” state. 

• The event loop dispatches 
events to the responder 
chain. 
Your UI elements are part of the 
responder chain.

Launch iOS app > App Lifecycle



App Lifecycle

• Interruptions result in a 
temporary loss of control by 
your app. 
Including user double-clicks the 
home button

Launch iOS app > App Lifecycle



App Lifecycle

• Background modes are 
advanced topics. 
Check Apple’s references 

• Save data and app states 
when the app is being 
deactivated.

Launch iOS app > App Lifecycle



App Lifecycle

• When coming back to the 
foreground, remember to 
check system changes. 
Like locale change, file system 
change, and etc.

Launch iOS app > App Lifecycle



Launch iOS app - Load Storyboard

• By default, the runtime would find the Main Interface settings of your 
project to load the Storyboard and instantiate the initial view 
controller as app’s root view controller. 
This setting is actually stored in “Info.plist” of your app

Launch iOS app > Load Storyboard



App Structure and File System



File System in OS X

• the OS X is a Unix-based system. 
Derived from BSD and NeXTSTEP. The root of FS is 
“/”. But Apple changed FS naming convention of 
UNIX-like system. 

• Applications may be able to walk through 
the whole file system. 
Applications may be also sandboxed which are only 
able to access its own directory.

App Structure > File System



Sandboxed iOS app
• Each app has its own sandbox, like an 

isolated island.  
Each apps are only able to access its own 
files and directories in its sandbox. 

• Use API call to get paths. 

• In the sandbox, there are only User 
Domain folders. 
No folders in local domain and system 
domain are available to iOS apps.

App Structure > File System



• <Application_Home>/AppName.app 
This is the bundle directory containing the app itself. Readonly. 

• <Application_Home>/Documents/ 
Store user documents and data files, which are not re-generable.  
It will be backed up. 

• <Application_Home>/tmp/ 
Temporary files that do not need to persist between launches of your app.  
It won’t be backed up.

App Structure > File System



• <Application_Home>/Library/ 
Top-level directory for files that are not user data files (regenerable by app). 
Content are usually grouped by your bundle identifier. 
It will be backed up, except the “Caches” folder. 

• <Application_Home>/Library/Caches 
Used to store cached files. It won’t be backed up. 

• <Application_Home>/Library/Application Support 
In general, this directory includes files that the app uses to run but that should 
remain hidden from the user.

App Structure > File System



Application Bundle

• In OS X and its derived platforms, applications are bundles.  
Bundles are a fundamental technology in OS X that are used to encapsulate 
code and resources. 

• A package is any directory that the Finder presents to the user as if 
it were a single file. 

• A bundle is a package with a standardized hierarchical structure that 
holds executable code and the resources used by that code.

App Structure > App Bundle





Content of iOS App Bundle

• <AppBundle>/<AppName> 
The main Unix executable file 

• <AppBundle>/Info.plist 
Configuration information for the application, including app display name, 
identifier, and main storyboard file. The system relies on the presence of this file 
to identify relevant information about your app and any related files.

App Structure > App Bundle > iOS Bundle Structure



Content of iOS App Bundle

• <AppBundle>/*.lproj 
Localized resources 

• <AppBundle>/Frameworks 
Embedded frameworks (dynamically linked components) 

• <AppBundle>/*.* 
General resources and assets

App Structure > App Bundle > iOS Bundle Structure



NSBundle

• Use NSBundle.mainBundle() to access the app’s bundle. 

• Use pathForResource(_:ofType:) method to find assets and 
resources in a given bundle. 

• Use infoDictionary to access the Info.plist content of a bundle.

App Structure > App Bundle

let mainBundle = NSBundle.mainBundle() 
let pathOfContentTxt: String? = mainBundle. 
    pathForResource("content", ofType: "txt") 
let infoDict = mainBundle.infoDictionary



NSFileManager

• Use NSFileManager to find paths of sandbox directories. It also 
provides methods for manipulating file systems. 

• Path manipulation APIs are provided by NSString.

App Structure > App Bundle

let fileManager = NSFileManager.defaultManager() 
let documentsURLs = fileManager.URLsForDirectory(.DocumentDirectory, 
    inDomains: .UserDomainMask) 
let libraryURLs = fileManager.URLsForDirectory(.LibraryDirectory,    
    inDomains: .UserDomainMask)



Common Resources in an App

• Storyboard 

• Asset catalogs  
Used to simplify management of images that are used by your app as part of its 
user interface. 

• Launch files 
Provides a simple placeholder image that iOS displays when your app 
starts up.

App Structure > Common Resources



Demo for Asset catalog and Launch Screen





View Controller and MVC Pattern



MVC Pattern

• Usually used in GUI application 
development 

• Becomes popular for web 
applications too

View Controller and MVC Pattern



MVC Pattern

• The model directly manages the 
data, logic and rules of the 
application 

• A view can be any output 
representation of information 

• The controller accepts input and 
converts it to commands for the 
model or view

View Controller and MVC Pattern



View Controller

• View Management 
Including Layout and Adaptivity of a 
tree of views. 

• User Interactions 

• Data Marshaling 

• Resource Management

View Controller and MVC Pattern



View Controller

• Each app has a root view 
controller which attached to 
its window. 
It’s usually the first view controller 
in your storyboard.

View Controller and MVC Pattern







View Controller States

View Controller and MVC Pattern > View Controller States



View Controller Memory Management

View Controller and MVC Pattern > View Controller Memory Management

Methods Usage / Task

init (initializers) Allocate critical data structures required by your view 
controller.

viewDidLoad Allocate or load data to be displayed in your views.  
Custom setup of your views.

didReceiveMemoryWarning Respond to low-memory notifications.

deinit Release resources if necessary.





Communication Patterns



Communication Patterns

• Notifications 

• Key-Value Observation KVO 

• Callback blocks/closures 

• Delegation 

• Target-Action

Communication Patterns - I



Target-Action Pattern

• Target-Action is the typical pattern used to send messages in 
response to UI events in iOS. 

• Target-Action establishes is loose coupling and easy to setup 
between the event sender and the receiver. 
Storyboard connections and UIControl uses this pattern. 

• Compilers could not check and validate for developers, like duck-
typing.

Communication Patterns - I > Target-Action



Delegate Pattern

• Delegation is a widespread pattern throughout Apple’s frameworks. 
It allows us to customize an object’s behavior and to be notified about certain 
events. 

• Delegation uses protocols to ensure the receiver understands 
curtain methods, but is still loosely coupled. 
Compilers know how to check the relationship between event sender and 
receiver by asking receivers to conform curtain protocols.

Communication Patterns - I > Delegate Pattern



UIWebView

Delegate Pattern

• Should I start loading this URL? (configuration) 

• I did start loading the URL. (callback) 

• I have finished loading the URL. (callback) 

• I failed to load the URL. (error handling)

Communication Patterns - I > Delegate Pattern



UIWebView

Delegate Pattern

• Should I start loading this URL? (configuration) 

• I did start loading the URL. (callback) 

• I have finished loading the URL. (callback) 

• I failed to load the URL. (error handling)

Communication Patterns - I > Delegate Pattern

UIViewController

Views are usually controlled 
by view controllers



UIWebView

Delegate Pattern

• Should I start loading this URL? (configuration) 

• I did start loading the URL. (callback) 

• I have finished loading the URL. (callback) 

• I failed to load the URL. (error handling)

Communication Patterns - I > Delegate Pattern

UIViewController

Delegates method calls 
to its view controller



UIWebView

Delegate Pattern

• Should I start loading this URL? (configuration) 

• I did start loading the URL. (callback) 

• I have finished loading the URL. (callback) 

• I failed to load the URL. (error handling)

Communication Patterns - I > Delegate Pattern

UIWebViewDelegate

Use protocols as a more 
general and abstract type

Protocols could make 
compilers check conformity



Delegate Pattern - Declaration

• We usually pass the instance into delegate methods for identification 
since the delegatee may be shared by multiple delegators. 

Communication Patterns - I > Delegate Pattern - Declaration

@objc protocol MYWebViewDelegate: NSObjectProtocol { 
    optional func webView(webView: MYWebView, shouldLoadURL url: NSURL) -> Bool 
    optional func webView(webView: MYWebView, didStartLoadingURL url: NSURL) 
    optional func webView(webView: MYWebView, finishedLoadingURL url: NSURL) 
    optional func webView(webView: MYWebView, failedToLoadURL url: NSURL, 
        withError error: NSError?) 
}



Delegate Pattern - Implementation

Communication Patterns - I > Delegate Pattern - Declaration

class MYWebView: UIView { 
    weak var delegate: MYWebViewDelegate? 

    func loadURL(url: NSURL) { 
        if let shouldLoad = self.delegate?.webView?(self, shouldLoadURL: url) { 
            if !shouldLoad { return } 
        } 
        self.delegate?.webView?(self, didStartLoadingURL: url) 
        // Load ... 
        let success = true 
        // Done 
        if success { 
            self.delegate?.webView?(self, finishedLoadingURL: url) 
        } else { 
            self.delegate?.webView?(self, failedToLoadURL: url, withError: nil) 
        } 
    } 
}



Delegate Pattern - Adoption

Communication Patterns - I > Delegate Pattern - Declaration

class MYViewController: UIViewController, MYWebViewDelegate { 

    var webView: MYWebView! 

    override func viewDidLoad() { 
        super.viewDidLoad() 
        self.webView = MYWebView() 
        self.webView.delegate = self 
    } 

    func webView(webView: MYWebView, didStartLoadingURL url: NSURL) { 
        print("Start loading url: \(url)") 
    } 
}



Demo: TextFieldDelegate (uikit-intro repo)



Recap

• Working with Objective-C APIs in Swift 

• App Lifecycle 

• File system, App Bundle, and resources management 

• Introduction to the View controller 

• Delegate pattern



References

• Using Swift with Cocoa and 
Objective-C 

• Strategies for Handling App State 
Transitions 
App Programming Guide for iOS 

• File System Programming Guide 

• About Asset Catalogs 

• View Controller Programming 
Guide for iOS 

• Communication Patterns @ objc.io 

• Target-Action 
Concepts in Objective-C Programming 

• Delegates and Data Sources 
Concepts in Objective-C Programming



Swift Taipei #4 Meet-up

• 6:30 PM - 9:00 PM, Tuesday, March 22, 2016 
CLBC  4F, 283 4  
http://www.meetup.com/Swift-Taipei-User-Group/events/229630870/




