

App Structure and UIKIit

March 17, ‘16

Working with iOS SDK

Most iOS SDK are still written in Objective-C and C.
Also for SDKs of OS X, tvOS and watchOS.

Both Swift and Objective-C are able to work with iOS SDK.

This relationship is like the one between JavaScript and jQuery or the one
pbetween Python and Django.

Objective-C classes are bridged as Swift classes. And C structs are

bridged as Swift structs.
Most types in I0S SDK are actually classes. @objc may be used necessary.

Working with iOS SDK

Working with iOS SDK

@objc protocol SomeProtocol: NSObjectProtocol {
func someRequired()

optional func someOptional()

Types conforming to a Swift protocol must implement all methods
declared in the protocol. (Like Java’s Interface)

Objective-C protocols include optional methods, which are not
required to be implemented by conforming types.

Working with iOS SDK - Objective-C Protocols

Working with iOS SDK

Numbers (Integers, Floats, and Boolean), String, Array, Set, and Dictionary

are bridged between 2 languages.
As NSNumber, NSString, NSArray, NSSet, and NSDictionary.

Objective-C doesn’t use namespace. Instead, it uses prefixes before

class names.
‘NS” means for the “NeXTSTEP” where the OS X is derived from. “UlI" means
UIKit (the I0S SDK).

Check 0bjC-Bridge.playground in the Swift-Introduction git repo.

Working with iOS SDK

Launch iOS app

Launch iOS app

The runtime would find the class which annotated with the
@UIApplicationMain attribute. This class would be the main entry
point of your app.

t's usually annotated on AppDelegate class in AppDelegate.swift

The annotated class must implement UIApplicationDelegate

protocol. And it usually inherits from UIResponder class.

UlApplicationDelegate handles events related to app’s lifecycle. UIResponder
responds to global events of the app.

Launch iOS app

App Lifecycle R

Foreground

Implement methods of \ inactive
UIApplicationDelegate to
handle app lifecycle events.

Active

Observe NSNotification

Background

emitted by UIApplication to

Background

handle app lifecycle events.

Notification pattern would be
mentioned in future classes.

Suspended

Launch iOS app > App Lifecycle

App Lifecycle - Event Handling

Implementing method in UTApplicationDelegate is like a ground
control center of your app elements, which is suited for app-level

resources.
But not all resources and elements in your app are accessible by the app

delegate.

Observing NSNotification emitted by UIApplication is
distributed in each elements and better for local resources.

Launch iOS app > App Lifecycle

App Lifecycle

We usually prepare app level
resources in “finish
Initialization” state.

The event loop dispatches
events to the responder

chain.

Your Ul elements are part of the
responder chain.

Launch iOS app > App Lifecycle

Launch Time

[User taps app icon }
(main())
E UIApplicationMain() j
[Load malin Ul file J
[First initialization J
[Restore Ul state }
[Final initialization] J
Running
[Activate; the app]
Event
Loop

[Switch to a different app

Your Code

application:
willFinishLaunchingWithOptions:

&

[Various methods J

application:
didFinishLaunchingWithOptions:

&

[applicationDidBecomeActive: }

[Handle events }

App Lifecycle

Interruptions result in a
temporary loss of control by

your app.
Including user double-clicks the
home button

Launch iOS app > App Lifecycle

Foreground

Event
Loop

A phone call arrives or
an alert-based interruption occurs

“
,/ ~_ Yes
,/'/ N
Y Ignore?

~ >

AN
N

No

//
-

Your code

applicationDidBecomeActive:

applicationWillResignActive:

|
)
)

Switch to a different app

App Lifecycle

Background modes are

advanced topics.
Check Apple’s references

Save data and app states
when the app is being
deactivated.

Launch iOS app > App Lifecycle

User switches to a different app

Foreground

Deactivate this app

)¢

Background

Enter background

No
Allowed
to run?
Yes

Monitor
events

Sleep when not
handling events

(Suspended

App sleeps

s—

t

Switch to this app

Your code

E applicationWillResignActive: J

[applicationDidEnterBackground:]

L Handle events J

-
-

Memory pressure

[Terminate app J

App Lifecycle

When coming back to the
foreground, remember to

check system changes.

Like locale change, file system
change, and etc.

Launch iOS app > App Lifecycle

Switch to this app

Background

Wake up app

Foreground

Activate the app

Event
Loop

Your code

applicationWillEnterForeground:

applicationDidBecomeActive:

Handle events

Launch 10S app - Load Storyboard

¥ = IssueBox M [l Genera \ Capabilities Resource Tags Info Build Settings
v IssueBox iOS PROJECT
v
2 AppDelegate.swift ‘ Deployment Info
Main.storyboard i IssueBox
TARGETS Deployment Target 9.0

| Assets.xcassets

LaunchScreen.storyboard 7~% IssueBox iOS

Info.plist =4 IssueBoxCore i0S

Devices Universal

Main Interface Main
» [IssueBoxCore A [J1ssueBoxCoreTests i0S
Device Orientation Portrait

lIncide NAawn

» IssueBoxCoreTests

Identity and Type

Build Phases Build Rules
Name IssueBox
Location Relative to Group w
“ IssueBox.xcodeproj
Full Path /Users/sodas/Projects/
u IssueBox/source/
“ IssueBox.xcodeproj

Project Documen t

Project Format Xcode 3.2-compatible [T

By default, the runtime would find the Main Interface settings of your
project to load the Storyboard and instantiate the initial view

controller as app’s root view controller.

This setting is actually stored in “Info.plist” of your app

Launch iOS app > Load Storyboard

App Structure and File System

File System in OS X

the OS X is a Unix-based system.
Derived from BSD and NeXTSTEP. The root of FS is
“/”. But Apple changed FS naming convention of

UNIX-like system.

Applications may be able to walk through

the whole file system.
Applications may be also sandboxed which are only
able to access its own directory.

App Structure > File System

!

AppIications_ Utilities
Developer
Library
System - Library
Users | User_1 - Library
B User 2 o Library
- Shared

Sandboxed iOS app

Each app has its own sandbox, like an

Isolated island.
Each apps are only able 1o access its own
fles and directories in its sandbox.

Use API call to get paths.

In the sandbox, there are only User

Domain folders.
No folders in local domain and system
domain are available to 1I0S apps.

App Structure > File System

Sandbox

Bundle Container

v .\. MyApp.app

Data Container

Documents

Library

Temp

| (
(.

iCloud Container

<Application_Home>/AppName.app
This is the bundle directory containing the app itself. Readonly.

<Application_Home>/Documents/
Store user documents and data files, which are not re-generable.
It will be backed up.

<Application_Home>/tmp/
Temporary files that do not need to persist between launches of your app.
't won't be backed up.

App Structure > File System

<Application_Home>/Library/

Top-level directory for files that are not user data files (regenerable by app).
Content are usually grouped by your bundle identifier.

[t will be backed up, except the “Caches” folder.

<Application_Home>/Library/Caches
Used to store cached files. It won't be backed up.

<Application_Home>/Library/Application Support
In general, this directory includes files that the app uses to run but that should
remain hidden from the user.

App Structure > File System

Application Bundle

In OS X and its derived platforms, applications are bundles.
Bundles are a fundamental technology in OS X that are used to encapsulate
code and resources.

A package is any directory that the Finder presents to the user as If
it were a single file.

A bundle is a package with a standardized hierarchical structure that
holds executable code and the resources used by that code.

App Structure > App Bundle

Utilities

| Open

il Show Package Contents

W Xcode
aa EIID ol v £ v W - Q. Search
~ Date Modified Size Kind
v Il Contents Nov 18, 2015, 3:06 PM Folder
> _CodeSignature Nov 13, 2015, 11:32 AM -~ Folder
> Applications Nov 18, 2015, 3:02 PM - Folder
> Developer Nov 15, 2015, 3:16 AM B Folder
> Frameworks Nov 18, 2015, 3:03 PM -- Folder
Info.plist Nov 18, 2015, 3:03 PM 20 KB Property List
Library Nov 12, 2015, 8:41 AM - Folder
MacOS Nov 18, 2015, 3:59 PM -- Folder
M Xcode Nov 18, 2015, 3:59 PM 35 KB Unix executable
> OtherFrameworks Nov 18, 2015, 3:04 PM . Folder
Pkginfo Nov 18, 2015, 3:03 PM 8 bytes TextEdit Document
> Pluglns Nov 18, 2015, 3:05 PM - Folder
Resources Nov 18, 2015, 3:03 PM - Folder
= Acknowledgments.pdf Nov 18, 2015, 3:03 PM 480 KB PDF Document
apns.icns Nov 18, 2015, 3:03 PM 246 KB Apple icon image
| AppDataDocument.icns Nov 18, 2015, 3:03 PM 92 KB Apple icon image
2 archive_lcon.icns Nov 13, 2015, 11:32 AM 1.2 MB Apple icon image
L mmasmabli o san laam leae Marsd0 ANAE _A:AD DAL A4 n A LonLonon s
& Macintosh HD > Applications > iy Xcode > Contents

Content of I0OS App Bundle

<AppBundle>/<AppName>
The main Unix executable file

<AppBundle>/Info.plist

Configuration information for the application, including app display name,
identifier, and main storyboard file. The system relies on the presence of this file
to identify relevant information about your app and any related files.

App Structure > App Bundle > iOS Bundle Structure

Content of I0OS App Bundle

<AppBundle>/*. lproj
L ocalized resources

<AppBund le>/Frameworks
Embedded frameworks (dynamically linked components)

<AppBundle>/*.*
General resources and assets

App Structure > App Bundle > iOS Bundle Structure

NSBundle

let mainBundle = NSBundle.mainBundle()

let pathOfContentTxt: String? = mainBundle.
pathForResource("content", ofType: "txt")

let infoDict = mainBundle.infoDictionary

Use NSBundle.mainBundle() to access the app’s bundle.

Use pathForResource(_:ofType:) method to find assets and
resources in a given bundle.

Use infoDictionary to access the Info.plist content of a bundle.

App Structure > App Bundle

NSFileManager

let fileManager = NSFileManager.defaultManager()

let documentsURLs = fileManager.URLsForDirectory(.DocumentDirectory,
inDomains: .UserDomainMask)

let libraryURLs = fileManager.URLsForDirectory(.LibraryDirectory,
inDomains: .UserDomainMask)

Use NSFileManager to find paths of sandbox directories. It also
provides methods for manipulating file systems.

Path manipulation APIs are provided by NSString.

App Structure > App Bundle

Common Resources in an App

Storyboard

Asset catalogs
Used to simplity management of images that are used by your app as part of its
user interface.

Launch files
Provides a simple placeholder image that I0S displays when your app
starts up.

App Structure > Common Resources

Demo for Asset catalog and Launch Screen

View Controller and MVC Pattern

MVC Pattern

Th—

Document

A

Usually used in GUI application
development

@@
Data Objects

Becomes popular for web
applications too = (o< | (G

View Controller and MVC Pattern

MVC Pattern

The model directly manages the
data, logic and rules of the

application @Z‘—’ED‘—
A view can be any output 1—1 pp—
representation of information —’
;
The controller accepts input and =) (< | (e

converts it to commands for the
model or view

View Controller and MVC Pattern

View Controller

A B
View Management
Including Layout and Adaptivity of a _
tree of views. splt View | _ Split View
Controller ‘ Container View
User Interactions
Data Marshaling
View CXntroIIer View antroller
Resource Management T ‘ i
}

View Controller and MVC Pattern

View Controller

Each app has a root view
controller which attached to

Its window.
[t's usually the first view controller
N your storyboard.

View Controller and MVC Pattern

UIWindow

rootViewController

View Controller

View

UIWindow]

J

rootViewController

childViewControllers

\ Y

7

\

-)

.----*

UIWindow]
J

rootViewController

view
UINavigationController

presentedViewController IChildViewcont rollers
[[= view

View Controller States

‘ Appearing |
viewWillAppear: \ / ' viewDidAppear:
\\ A
< ™S
s\ 4 D\
g s \
2 5 [‘
= & “ Appeared |
= 2 \ /
3 2 /
> 2 A\ J
viewDidDisappear: / i \\ viewWillDisappear:

View Controller and MVC Pattern > View Controller States

View Controller Memory Management

Methods Usage / Task

Allocate critical data structures required by your view

init (initializers)
controller.

Allocate or load data to be displayed in your views.

viewDidLoad .
Custom setup of your views.

didReceiveMemoryWarning | Respond to low-memory notifications.

deinit Release resources if necessary.

View Controller and MVC Pattern > View Controller Memory Management

Communication Patterns

Communication Patterns

Notifications
Key-Value Observation KVO

Callback blocks/closures

Delegation

Target-Action

Communication Patterns - |

Target-Action Pattern

Target-Action is the typical pattern used to send messages in
response to Ul events in iOS.

Target-Action establishes is loose coupling and easy to setup

between the event sender and the receiver.
Storyboard connections and UlControl uses this pattern.

Compilers could not check and validate for developers, like duck-
typing.

Communication Patterns - | > Target-Action

Delegate Pattern

Delegation is a widespread pattern throughout Apple’s frameworks.
[t allows us to customize an object’s behavior and to be notified about certain
events.

Delegation uses protocols to ensure the receiver understands

curtain methods, but is still loosely coupled.
Compilers know how to check the relationship between event sender and
receiver by asking receivers 1o conform curtain protocols.

Communication Patterns - | > Delegate Pattern

Delegate Pattern

Should | start loading this URL? (configuration)
| did start loading the URL. (callback)
| have finished loading the URL. (callback)

| failed to load the URL. (error handling)
UlWebView

Communication Patterns - | > Delegate Pattern

Delegate Pattern

Views are usually controlled
by view controllers

Should | start loading this URL? (configuration)

UIViewController

| did start loading the URL. (callback)
| have finished loading the URL. (callback)

| failed to load the URL. (error handling) |

Communication Patterns - | > Delegate Pattern UIWebView

Delegate Pattern

Should | start loading this URL? (configuration)
| did start loading the URL. (callback)
| have finished loading the URL. (callback)

| failed to load the URL. (error handling)

Delegates method calls
to its view controller

Communication Patterns - | > Delegate Pattern

UIViewController

UIWebView

De I eg ate Patte rn Protocols could make

compilers check conformity

Use protocols as a more
general and abstract type

Should | start loading this URL? (configuration)

, , UlWebViewDelegate
| did start loading the URL. (callback)

| have finished loading the URL. (callback)

| failed to load the URL. (error handling)

Communication Patterns - | > Delegate Pattern UIWebView

Delegate Pattern - Declaration

@objc protocol MYWebViewDelegate: NSObjectProtocol {
optional func webView(webView: MYWebView, shouldLoadURL url: NSURL) —> Bool
optional func webView(webView: MYWebView, didStartLoadingURL url: NSURL)
optional func webView(webView: MYWebView, finishedLoadingURL url: NSURL)
optional func webView(webView: MYWebView, failedToLoadURL url: NSURL,
withError error: NSError?)

We usually pass the instance into delegate methods for identification
since the delegatee may be shared by multiple delegators.

Communication Patterns - | > Delegate Pattern - Declaration

Delegate Pattern - Implementation

class MYWebView: UIView {
weak var delegate: MYWebViewDelegate?

func loadURL(url: NSURL) {
if let shouldLoad = self.delegate?.webView?(self, shouldLoadURL: url) {
if !shouldLoad { return }

¥

self.delegate?.webView?(self, didStartLoadingURL: url)
// Load ...

let success = true

// Done

if success {
self.delegate?.webView?(self, finishedLoadingURL: url)

T else {
self.delegate?.webView?(self, failedToLoadURL: url, withError: nil)

¥

¥

Communication Patterns - | > Delegate Pattern - Declaration

Delegate Pattern - Adoption

class MYViewController: UIViewController, MYWebViewDelegate {
var webView: MYWebView!

override func viewDidLoad() {
super.viewDidLoad()
self.webView = MYWebView()
self.webView.delegate = self

}

func webView(webView: MYWebView, didStartLoadingURL url: NSURL) {
print("Start loading url: \(url)")
¥
I3

Communication Patterns - | > Delegate Pattern - Declaration

Demo: TextFieldDelegate (wikit-intro repo)

Recap

Working with Objective-C APIs in Swift

App Lifecycle

File system, App Bundle, and resources management
Introduction to the View controller

Delegate pattern

References

Using Swift with Cocoa and
Objective-C

Strategies for Handling App State

Transitions
App Programming Guide for i0S

File System Programming Guide

About Asset Catalogs

View Controller Programming
Guide for iI0S

Communication Patterns @ objc.io

Target-Action
Concepts in Objective-C Programming

Delegates and Data Sources
Concepts in Objective-C Programming

Swift Taipei #4 Meet-up

o~
Q~Z>

§' = : Taipei Private Yan z g— _ 8‘
A 9 * Ping High S’Shoo[7 S #B g
< EFhB S) . .
R > ’ > a {_Chaorau Sukiyaki 1%} IS
5. S = %
3 S 2 o g
& ~ 2 . 3 5
c No. 283, Section Lane 44, Siwei Rd = -
S 1, Fuxing South Rd... eI o =
o CEEL c
2 Lane 52, Siwei Rg =
e The Corner House 5
%)
Park Taipei Ry
AiLEm
.) L A
Affiliated Senior - SNESE SIWEi 80 L)
REEB S High School of
- [32 BH A B
: o -
_Daan Park 2 = Eclat
2 R EE ——= = Section 4, Xinyi L taTA
Section 3, Xinyi Rd DAATY . Xinyl Rd SlLE¥As
AN
o K8
o 7]
> . %) 3 %” 4 Wenchang gy
o 2 American Institute in 2z = o Q
) o . Taiwan / Taipei office = e = o S) Crr M e W

6:30 PM - 9:00 PM, Tuesday, March 22, 2016
CLBC RZhlEE 4F almARZ&EHEEE—E283541E
http.//www.meetup.com/Swift-Taipei-User-Group/events/2296308 70/

Xinyi Anhe 22»
YT T T

jan St

