

Tien-Che Tsai,

Tien-Che Tsai,

• Received a Master degree after National Taiwan University 

• An iOS app Developer and Lecturer 
Worked for Tickle Labs, Inc and

• Also a backend developer with Python/Django and Node.js.

• Deploy web apps using cloud infrastructures like Amazon Web
Services, Heroku, and Google App Engine.

Tien-Che Tsai,

• mail: sodas@icloud.com / tctsai@nccu.edu.tw

• twitter: @sodastsai

• LinkedIn: linkedin.com/in/sodastsai

• Slides and materials would be available at Moodle
(moodle.nccu.edu.tw)

Mobile Application Development
Spring 2016 @ NCCU CS

Apple reinvents the phone
Jan. ‘07

Apple I & II 
1976

Macintosh 
1984

NeXT 
1985

iMac 
1998

iPod & iTunes 
2001

iPhone 
2007

iPad 
2010

WATCH 
2015

 tv 
2015

How to build an app?
Instead of final exam, this class asks you to build an app for grading

Solution

•

• Target Audience  

•  
 Target Audience

Flow Chart

• /

• App

Wireframe & Paper
Prototyping
•  

•  

•  
 

• Target Audience

Mockup

•

 Mockup

•

• (UI)
(UX) (Programmer)

While writing code …

• Focus on your product, use Open-Source packages and libraries for
common utilities or elements.

• Following design patterns and conventions saves you from common
issues which occurred to most developers.

• Use automation tools and test driven development to speed up.

After writing code …

• Test with target audience and fix the solution of how you solve
“problems” iteratively.

• Promote your work with social media and communities.

• Analyze / Measure what you have done and decide what to do next.

• Find a business model.

Preface

Goals

• Understand the newest and most popular programming language:
Swift

• Be able to use Xcode to build apps for iOS devices and even
watchOS, tvOS and OS X

• Real-life OOP experience

• Use git and Work with open source projects/libraries

Preface > Goals

Prerequisites

• Programming Experiences 
This is not a class for programming newbies. You should have done at least a
final project of other programming class before.

• Bring your own Mac (required) and iOS device (recommended). 
We would target on iOS 9, so you should have your Mac at least OS X El
Capitan 10.11 and Xcode 7.0 or newer version installed.  
You could install Xcode from the Mac App Store.

Preface > Prerequisites

Prerequisites

• Object Oriented Programming, like C++ or Java.

Preface > Prerequisites

• Classes and Instances

• Members and Methods

• Inheritance and Override

• Polymorphism & Overloading

• Encapsulation

• Interfaces or Virtual classes

Grading
• 4~5 Personal homework assignments (40%)  

May include a small and simple quiz or report

• a Final team project and presentations (45%) 
Including a proposal presentation, a progress review presentation, and a final
demo representation. A team would be composed by 4 ppl.

• Participation of in-class interaction and online group discussion (15%) 
You are encouraged to ask problems, discuss issues of your homework or final
projects, post some related news, and even attend meet-up events held by
developer communities. No roll call in the class.

Preface > Grading

Auditors

• Leave the seat and resources to the students who enrolled in this
class first.

• You’re welcome to participate the discussion with enrolled students.  
Register via moodle.nccu.edu.tw

• If possible, you should also finish all the homework and assigned
tasks, even the final project if you could group a team for this.

Preface > Auditors

Feedback

• An anonymous Google Form for feedback of classes in this course. 
Don’t be shy, you could response any questions, fixes, or suggestions after the
class as soon as possible.

• Sample projects would be hosted on GitHub, submit a PR or an
issue if something goes wrong.  
The Keynote slides maybe hosted there too.

Preface > Feedback

Syllabus

Syllabus

Syllabus > Section 1: Introduction to Xcode and Swift & Design your app

3/3 Xcode, Storyboard, and the Swift Language

3/10 Use MVC Pattern to create a simple app

3/17 Structure of an App & Foundation framework

3/24 Common UI Elements & App Design

3/31 Human Interface Guideline & Midterm Team Project Proposal

Introduction to Xcode and Swift & Design your app

Syllabus

Syllabus > Section 2: Implement your app & Interact with the world

4/7 Open Source libraries, Networking, and Web/Social services

4/14 File Storage, Database, CoreData, and iCloud

4/21 Notification & Accessories, Location, and Motion Sensors

4/28 Dive into Swift deeply, Brief introduction to Objective-C, and Gaming SDK

5/5 Midterm Project Progress Presentation and Review

Implement your app & Interact with the world

Syllabus

Syllabus > Section 3: Analyze and Improve your app

5/12 Advanced Xcode (Debugging, Automation, and Testing) & Analytics

5/19 CoreGraphics and CoreAnimation & Advanced Concurrency

5/26 [TBA]

6/16 Final Team Project Presentation

6/23 [TBA] Final Team Project Presentation

Analyze and Improve your app

iOSOS X tvOSwatchOS

iOSOS X tvOSwatchOS

MapKit / WatchKit / …

CoreGraphics / CoreImage / Metal / AVKit / SpriteKit / …

AppKit (Cocoa, OS X) UIKit (Cocoa Touch, iOS, watchOS, and tvOS)

CFNetwork / CoreData / CoreMotion / CoreLocation / HomeKit / …

BSD System (Unix) / GCD / CoreBluetooth / Accelerate / Security / …

Cocoa & 
CocoaTouch

Media

Core Services

Core OS

Xcode

LLVM Compiler The Swift Language

The Swift Language

• A modern language for iOS, OS X, watchOS, and tvOS apps.

• It’s built on the best of C and Objective-C,  
without the constraints of C compatibility.  
Apple characterized Swift as the Objective-C without the C

• A new language that is fully utilized the LLVM compiler infrastructure.

• Works with current C and Objective-C codebase including the
Cocoa and CocoaTouch frameworks.

The Swift Language / Introduction

Swift v.s. Objective-C

• Objective-C is a very old language. (1983) It’s also known as a
superset of the C language.  
This makes all C libraries available, but also constrains the possibility of using modern
programming paradigms like closure.

• Objective-C has a very clear and expressive method naming (called
“named parameters”)

The Swift Language / Swift v.s. Objective-C

Swift v.s. Objective-C

• Swift is derived from Objective-C which also keeps the “named
parameters”, late binding, and dynamic dispatch.  
These makes the language also expressive and easier to be compatible with Objective-
C. Also makes the language extensible and flexible to use.

• These features have also performance and safety trade-offs.  
Swift addresses these issues by adding new annotate syntax, inferring types, and
patching code to fix common issues during the compile time.

• The performance is greater than Objective-C.  
The LLVM team invested considerable effort in aggressive optimization for Swift.

The Swift Language / Swift v.s. Objective-C

Swift v.s. Objective-C

• Swift is also influenced by modern programming languages like
Ruby, Python, Haskell, and JavaScript.

• Modern paradigm/concepts like “Type inference”, “Generics”, and
“Functional programming” are also supported.

• Swift is a “Protocol-oriented programming” language which provides
great extensibility to developers.

The Swift Language / Swift v.s. Objective-C

Xcode
https://goo.gl/7aJXSm

Simulator

git
https://try.github.io/ 
https://www.codecademy.com/learn/learn-git

moodle.nccu.edu.tw

